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Motivated by recent nuclear magnetic resonance experiments on ZnCu3(OH),Cl,, we present an exact-
diagonalization study of the combined effects of nonmagnetic impurities and Dzyaloshinskii-Moriya (DM)
interactions in the s=1/2 kagome antiferromagnet. The local response to an applied field and correlation-
matrix data reveal that the dimer freezing which occurs around each impurity for D=0 persists at least up to
D/J=0.06, where J and D denote, respectively, the exchange and DM interaction energies. The phase transi-
tion to the (Q=0) semiclassical 120° state favored at large D takes place at D/J=0.1. However, the dimers
next to the impurity sites remain strong up to values D~ J, far above this critical point, and thus do not
participate fully in the ordered state. We discuss the implications of our results for experiments on

ZHCU3(OH) 6C12 .
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I. INTRODUCTION

The s=1/2 antiferromagnetic (AFM) Heisenberg model
on the two-dimensional kagome lattice is one of the simplest
models in frustrated quantum magnetism, but displays some
of the most complex behavior known.! As such, it has for
decades maintained its position at the forefront in the search
for novel quantum-mechanical phases of matter, such as the
resonating-valence-bond (RVB) spin-liquid state proposed
initially by Anderson.”> The nature of the ground state of the
s=1/2 kagome AFM has still not been fully established: the
variety of competing phases proposed in the literature in-
cludes valence-bond crystals (VBCs),> gapped spin
liquids,*~® and gapless critical phases.”® Under these circum-
stances, the discovery that the kagome AFM is extremely
sensitive even to the smallest perturbations, such as the pres-
ence of anisotropies™!? or of nonmagnetic impurities,'"!? is
completely consistent.

In this context, the recent discovery!'® of the mineral her-
bertsmithite, ZnCu;(OH)4Cl,, has attracted very considerable
attention because it represents a structurally perfect realiza-
tion of the s=1/2 kagome AFM. This material is composed
of Cu?* ions (s=1/2) arranged on kagome planes separated
by triangular layers of nonmagnetic Zn>* ions. Despite the
large AFM exchange, J=170—190 K in this material,'*! in
experiment there is no evidence of long-ranged magnetic or-
der or even of spin freezing at any temperatures down to
50 mK.'®!7 There is in addition no sign of a spin gap in the
excitation spectrum.'”!8

However, it has also been established that in
ZnCu;(OH)Cl, there is a significant (5%-10%) intersite ex-
change of Cu* ions with the Zn** ions intended to separate
the kagome planes.'®?° The displaced Cu®* ions are thought
to account for the large Curie tails observed in powder sus-
ceptibility measurements'”?! and for the field-dependent
Schottky-like anomaly in the specific heat.’ At the same
time, the Zn?* ions displaced into the kagome planes play the
role of nonmagnetic vacancies, which are known!’!? to
modify the ground-state properties in a nontrivial way. How-
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ever, these impurities can also be considered as a probe of
kagome physics, and in this respect the recent '’O nuclear
magnetic resonance (NMR) experiments reported by Olariu
et al.'® offer extensive insight. While each 0%~ ion is coupled
predominantly to two neighboring Cu* ions in the kagome
planes, the NMR spectra revealed a broad distribution of
local susceptibilities. The relative 1:2 ratio between the line
shifts of the two leading features in the 'O spectrum was
explained on the basis of distinguishing between two groups
of O sites in the doped kagome planes, those [“Defect” (D)]
probing the magnetic polarization directly next to an impu-
rity site, and hence coupled only to one Cu spin, and those
[“Main” (M)] reflecting the polarizations of all other sites.
This interpretation was also consistent with the relative in-
tensities of the two lines based on the expected in-plane dop-
ant concentration of approximately 5%. Another major find-
ing of these experiments was the observation that the M and
D line shifts approach a finite value as T—0, suggesting a
nonsinglet ground state without a gap. This result can also be
inferred from the nonactivated behavior of the nuclear spin-
lattice relaxation rate, 1/7T), at low temperatures.18

While the true nature of the nonmagnetic ground state of
the pure, s=1/2 Heisenberg kagome AFM remains un-
known, all of the guidance obtained from VBC or RVB con-
structions suggests a total singlet. Indeed, the nearest-
neighbor RVB basis has been shown to deliver a
semiquantitative account of some of the properties of the
system, both without>?? and with!! impurities, and for this
reason a nonsinglet ground state presents a considerable
challenge. However, by the nature of its structure, a triangu-
lar geometry involving active d,2_2 and d3,2_,2 orbitals, the
Cu—Cu bonds in ZnCu;(OH)4Cl, are not centrosymmetric.
The resulting Dzyaloshinskii-Moriya (DM) interactions®? in-
duce quite generally a small admixture of triplet states into a
singlet ground state,'* and thus have been discussed'® as a
likely explanation for the finite response observed at zero
temperature. The DM interactions in herbertsmithite have
been determined recently by electron spin resonance
experiments.”* These measurements show that the dominant
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component of the DM interaction is that perpendicular to the
kagome plane, which is of order D=15 K~0.08/, while
the in-plane component, D', although not excluded by sym-
metry, is much smaller (D' =2 K~0.01J).

Clearly, a complete theoretical description for the ground-
state properties of ZnCu;(OH)4Cl,, including the magnetiza-
tion response around the impurity sites, must take into ac-
count the combined effect of both the DM interactions and
the nonmagnetic impurities in the kagome planes. Among the
many approaches adopted to gain further insight into the
kagome system, it is well known that the clean classical
kagome AFM without DM anisotropy has an extensive
ground-state degeneracy,” which is fully lifted by quantum
fluctuations only beyond harmonic order.”-2® The inclusion
of DM anisotropy perpendicular to the kagome plane selects
immediately the uniform (Q=0) three-sublattice state.”'? Cé-
pas et al. showed recently?® that in the quantum (s=1/2)
kagome AFM, this ordered phase can be stabilized only for
D/J=0.1. This implies that herbertsmithite may well be
very close to the critical point where quantum fluctuation
effects promote a disordered ground state. The linear suscep-
tibility of the clean kagome AFM in the presence of DM
interactions has been analyzed®® using a perturbative expan-
sion about a short-ranged VBC ground-state scenario, while
the effect of nonmagnetic impurities without DM interac-
tions has been studied in Refs. 11, 12, 31, and 32. It has been
shown that one of the central consequences of a nonmagnetic
impurity in the quantum kagome AFM is a characteristic
dimer freezing, which takes place around the impurity site
due to frustration relief in the affected triangles.!-1?

Here we present an extensive exact-diagonalization study
which includes the effects of both DM anisotropy and non-
magnetic impurities. Our results can be summarized as fol-
lows. For D/J=0.06, the effect of frustration relief around
the impurity!"'? causes the formation of strong local dimers
whose magnetization response, a staggered moment directed
along DX B, is qualitatively similar to that of isolated
dimers. In this regime we find surprisingly large variations in
the magnitude of the response on the different induced
dimers. For sites far away from the impurity, we argue that
the response must be uniform and much smaller in magni-
tude. For D/J=0.1, the system enters the Q=0,120° semi-
classically ordered state,”!'%?° and the effect of impurities
becomes very short-ranged. However, even here we find that
the dimers next to the impurity remain strong up to values
D/J~1, meaning that their spins remain correlated with
each other, rather than participating in the ordered state, for
D/J=1.

This article is organized as follows. In Sec. II we intro-
duce the model Hamiltonian and discuss some of the sym-
metry aspects of the clusters considered in our exact-
diagonalization calculations. The results for the local
magnetization response are presented and analyzed in Sec.
III. In Sec. IV, we investigate the dominant magnetic corre-
lations on the basis of the full correlation matrix (the “natural
orbital” method). We conclude in Sec. V with a discussion of
the implications of our results for experimental measure-
ments on ZnCu;(OH)4Cl,. We also include two appendices
which elaborate on the magnetization response of a minimal
(four-site) cluster (Appendix A) and on the natural orbital
method (Appendix B).
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FIG. 1. (Color online) The kagome lattice of Cu®* ions (s
=1/2), containing a single nonmagnetic Zn>* impurity. Bond ar-
rows define site labels i and j in each interaction term D-s; Xs;,
while D=De, with D> 0 for all bonds. Curving arrows denote the
C¢ symmetry about the hexagon centers.

II. MODEL

We consider a spin-1/2 model on the kagome lattice with
a single nonmagnetic impurity described by the Hamiltonian

H=J2s;-s;+ 2D, (s;Xs)-B-8, (1)
Cij) (ij)

with periodic boundary conditions. The first term is the
Heisenberg exchange energy between nearest-neighbor spins
(ij), the second term represents the DM interactions, and the
last term is the Zeeman energy of the total spin S=Xs; in a
field B. In what follows, we work in the fixed reference
frame xyz shown in Fig. 1. The field is taken to be in the xz
plane at an angle 6 from the z axis. The DM vectors on every
bond are taken to be perpendicular to the kagome plane and
are fixed by the symmetry of the clean system, namely, trans-
lations and Cg rotations around the hexagon centers. We
have chosen the site-labeling convention, denoted in Fig. 1
by the directionality of the arrows from i to j, such that D;;
=De, with D >0 for all bonds.

In this study we do not consider an in-plane component,
D', of the DM vector. Quite generally, the in-plane DM
problem on the kagome lattice is rather different from its
out-of-plane counterpart, which we study here. At the classi-
cal level,’ the presence of D’ promotes a noncoplanar spin
state with net ferromagnetic order, whose uniform out-of-
plane magnetization component is controlled by the ratio
|D’|/J, and a 120° structure of the xy-plane components with
Q=0. In contrast to the out-of-plane case, here the directions
of the spins in the xy plane are completely fixed by the
in-plane DM terms, which break explicitly all global spin
symmetries. However, as noted above, in ZnCuz(OH)4Cl,
the in-plane component of the DM vector has been found*
to be much weaker than the out-of-plane component
(|D'/D|~1/8). Because, in addition, the in-plane compo-
nent may be transformed away up to order D’?/J by appro-
priate spin rotations,>>3? this term appears rather unlikely to
be relevant in determining the physics of herbertsmithite.

We will focus on the magnetization response of the sys-
tem in finite fields, up to the values B~ 10 T(B=<J/20)
probed by experiment. For a general field orientation 6, the
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U(1) spin rotation symmetry around the z axis is broken and
thus the total magnetization S* is not a good quantum num-
ber. Because of the impurity site, the same is true also for the
momentum. Thus we can treat kagome clusters with a maxi-
mum of N=26 magnetic sites, and here we show primarily
the results for N=14, 20, and 26. These clusters are symmet-
ric with respect to spatial inversion through the impurity site.
For a nondegenerate ground state, this sets the constraints

(s1)=(sg), (s2)=(s7), (s3)=(sp2).... (2)

Furthermore, the clusters with N=14 and 26 are also spa-
tially symmetric under reflection through the xz plane which
passes through the impurity site (Fig. 1), whence their
Hamiltonian [Eq. (1)] remains invariant under the corre-
sponding mirror operation (spatial reflection followed by the
time reversal). For a nondegenerate ground state, this gives
in addition

(79 =(s7%, (s =—(s7),

(39 =(s5%, () =—(sg), ... 3)

This mirror symmetry is also present in the clean infinite
kagome lattice. Thus if the vacant site were occupied by a
spin sy, Eq. (3) would require (s})=0. The remaining sym-
metries of the clean kagome lattice would then enforce (s})
=0 for all sites i, an argument we will employ below to
demonstrate that in the disordered phase (D/J=<0.1) there
can be no staggered magnetic response along the y axis suf-
ficiently far from a vacant site.

In addition to these “symmetric” clusters, we have also
investigated clusters with odd numbers of magnetic sites,
particularly with N=17 and 23, whose ground state has a
finite moment S =1/2. As shown in Ref. 34, this moment
does not form a bound state around the impurity site, as is
the case in systems such as the checkerboard lattice,>* but is
delocalized over the entire cluster. Thus we expect no differ-
ence between clusters with even or odd numbers N of mag-
netic sites in the thermodynamic limit, and our results indeed
conform with this picture.

III. LOCAL RESPONSE

Figure 2 shows the local in-plane magnetizations (s})
(red arrows) and the local spin correlation functions (s;-s;)
(described quantitatively by the thickness of each bond ij)
for the 26-site cluster with B=J/20 and #=30°, and for four
representative values of D/J. The full D/J dependence of the
in-plane magnetizations, the correlation amplitudes, and the
local twist amplitudes ((s; X s;)) is shown for each type of
site or bond in Fig. 3. These results demonstrate that there
exist two primary regimes with qualitatively different mag-
netic response, whose properties we discuss in detail in the
following subsections. In summary, these are (i) the
small-D/J regime (D/J=<0.06), where there is a local dimer-
like response for the sites around the impurity, and (ii) the
large-D/J regime (D/J=0.1), which is characterized by the
expected®%2?? in-plane 120° magnetic ordering pattern, al-
beit with a special response from the sites right next to the

PHYSICAL REVIEW B 79, 214415 (2009)

(a) D/J=0.05

AR

b) D/J=0.1

M%'\)%

XX X

X AKX
AAK LS

K AKX
XXX
*XY%( X

d) D/J=3

XYX X

c) D/J=0.3

FIG. 2. (Color online) In-plane magnetizations and bond spin
correlation functions for the 26-site kagome cluster with B=J/20
and 0=30°. The lengths of the arrows are proportional to ({s})?
+(s} »2)12 and the thicknesses of the bonds to (s;- s;).

vacancy. We also find an apparent intermediate regime
(0.06=D/J=0.1) with a peculiar magnetization pattern
around the impurity, but with no evidence of long-ranged
magnetic correlations, and we will also characterize this to
the extent that our calculations allow.

A. D=0.06/: local dimerlike response

We begin by considering the behavior of the nearest-
neighbor spin correlations, (s;-s;), which are shown in Fig.
3(c) and are also denoted by the bond thicknesses in Fig. 2.
A low-D regime, where the correlations are controlled by the
exchange interaction (J) and by the presence of the impurity,
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FIG. 3. (Color online) D dependence of (a) (s7), (b) (s?), (c)
(s;s;), and (d) (s;Xs;" for the 26-site kagome cluster with B
=J/20 and #=30°. i and j in panels (c) and (d) are nearest-neighbor
sites only. The curves which correspond to the sites or bonds closest
to the impurity are designated by (red) filled symbols.
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can be seen to exist for D/J=0.06, although in fact the
correlation amplitudes begin to deviate from their zero-D
limit at D/J~0.03. This limit was studied in detail in Ref. 11
and is characterized by a large and oscillatory variation in the
correlation amplitudes as a function of distance from the im-
purity. As shown in Fig. 2(a), the strongest dimerization is
found on the bonds nearest the vacancy, where (s;-s;) =
—-0.69 is very close to the value of —0.75 expected for an
isolated dimer. This local “dimer freezing” is a key conse-
quence of the frustration relief in the two triangles containing
the vacancy!"!? and, as we will discuss below, has direct
implications for the magnetization response of the corre-
sponding sites in the small-D/J regime.

The local twist amplitudes ((s; X s;)*) shown in Fig. 3(d)
represent, from Eq. (1), the DM contribution to the total
magnetic energy. As expected for the small D/J regime,
these scale linearly with D/J for all bonds, although with a
quite inhomogeneous distribution of slopes depending on the
distance of the bond from the impurity. In particular, the
bonds closest to the impurity have one of the smallest twist
amplitudes, as might be anticipated from their strong dimer-
ization.

Turning next to the magnetization response shown in
Figs. 2(a), 3(a), and 3(b), this develops predominantly in the
xy plane, as expected given the easy-plane character of the
DM anisotropy, and the induced spin components are of or-
der (s7')~107~1072. By contrast, the out-of-plane response
is very small ((s?)=107%), and thus will not be considered in
the following. With the exception of sites strongly influenced
by the periodic boundary conditions, the magnetization re-
sponse shows a number of features which are also present in
the 20-site cluster and can be understood qualitatively on the
basis of the strong local dimer formation around the impu-
rity. Indeed, the direction of the induced magnetizations at
the strongly dimerized bonds is qualitatively similar to the
response expected if they were isolated: a staggered polar-
ization in the direction D X B (here the y axis) and a uniform
polarization in the direction (DXB)XD (x axis). At the
quantitative level, the actual magnitude of the magnetization
response goes beyond the isolated-dimer picture, showing
the striking feature that the moments induced on the four
“next-most-strongly” dimerized bonds [bond (3,4) and its
equivalents in Fig. 1] are larger by a factor of 3—4 than on
the bonds closest to the impurity. The origin of this result,
which we probe in detail below, is rather deeper than a
simple anticorrelation between spin correlation amplitude
and induced moment. It lies in the fact that, while the
ground-state wave function close to the impurity can be de-
scribed as an approximate product state of local dimers, the
actual nature of the excitations may nevertheless differ sig-
nificantly from such a picture.

To clarify this point, we isolate the sites 1-6 of Fig. 1 and
consider their response in the small-D/J regime. Figure 4
shows the exact correlations and induced magnetization of
this cluster with parameters B=J/20 and 6#=30°, and for the
same four representative values of D/J shown in Fig. 2. Note
that the magnetic response at bonds (3,4) and (5,6) is not
symmetrical because the reflection symmetry relating these
is broken explicitly in the presence of DM interactions. The
response for D=0.05J is very similar to that of the sites 1-6
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FIG. 4. (Color online) In-plane magnetization pattern (red ar-

rows) and bond strengths (bond thickness in blue) on the isolated
six-site cluster discussed in Sec. III, for B=J/20 and #=30°.
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in Fig. 2, and in fact the same physics can also be shown to
dominate the response of a four-site cluster (sites 1-4 of Fig.
1), as detailed in Appendix A. In all cases, the magnetiza-
tions induced on bond (3,4) are larger than those on bond
(1,2) by a fixed factor of up to 5. The qualitative interpreta-
tion (Appendix A) of this result lies in the different character
of the local excitations on bonds (1,2) and (3,4): a triplet
excitation on bond (1,2) is a true eigenstate of the isotropic
Hamiltonian, whereas a similar triplet excited on the bond
(3,4) is not, and may propagate away. As a result, the mag-
netization response of bond (1,2) is to first order in D/J the
same as that of an isolated dimer, while that of bond (3,4)
will be almost five times larger in the extreme case of the
four-site cluster. The same arguments apply not only on the
six-site cluster, but also to the impure kagome lattice, al-
though in this latter case a triplet excitation on the bonds
next to the impurity does not remain fully localized because
the bonds are not fully “frozen.” More generally, the quali-
tative agreement between the response of the smallest clus-
ters and the response of the corresponding sites in the 20-
and 26-site calculations shows that in the regime of small
D/J, the magnetization profile around the impurity is gov-
erned almost entirely by local correlations.

The magnetization response far from the impurity is ex-
pected to be that of the clean kagome lattice with DM inter-
actions. As explained above, the staggered magnetization
must vanish by symmetry, while a uniform component
(along the x axis) can survive. This latter scales as D X (D
X B) (see also Ref. 30) and thus is very much weaker than
the staggered response in close proximity to the impurity.
This result is corroborated by exact-diagonalization calcula-
tions on a clean 12-site kagome cluster (not shown here),
which reveal a very weak uniform response ({s})~1077). We
comment that results for larger clean clusters (N=18 and 24)
suffer from severe finite-size effects due to the presence of
inequivalent loops in these geometries, and thus cannot be
used for a quantitative determination of the magnetization
response far from the impurity in the thermodynamic limit.

B. D=0.1J: semiclassical Q=0,120° ordered state

At large values of D/J [Fig. 2(d)], the magnetization pro-
files correspond closely to the expected”!??° Q=0 semiclas-
sical three-sublattice (120°) state. We note here that in this
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case the magnetic field and the impurity combine to pin one
of the (infinitely many) degenerate semiclassical states. This
can be understood physically from the fact that the selected
configuration is the one in which the spin missing at the
impurity site would be antiparallel to the field, and thus
would contribute a positive Zeeman energy. However, Fig.
2(d) also shows that the spins closest to the impurity are
slightly tilted away from a perfect 120° orientation. In fact
these spins do not participate in the ordered state in the same
way as all the other (“bulk”) spins do, as can be inferred
from the spin correlation amplitudes in Fig. 3(c). Above
D/J~0.06, and especially beyond D/J~ 0.6, all the bonds
except the two closest to the impurity attain very similar
strengths. By contrast, the dimers next to the impurity (de-
noted by filled symbols) resist this tendency, their spins re-
maining strongly correlated up to surprisingly high values in
excess of D~ J. There is no such feature on the neighboring
bonds, i.e., there is no indication of a length scale in this
behavior. This is another primary consequence of frustration
relief on the triangles hosting the impurity, and will be fur-
ther corroborated by our analysis of the in-plane correlation
data in Sec. IV.

One further comment regarding the behavior of the twist
amplitude at large D/J is in order here. In the clean kagome
system, the twist amplitude is the same on every bond, but
according to Fig. 3(d), the sites next to the impurity have a
twist amplitude, ((sXs;)?)=-0.3 for D/J—c°, larger than
on any of the other bonds. This reflects the fact that the
relative orientation of these two spin pairs lies between the
120° orientation of the spins on triangles and the 90° orien-
tation favored in an isolated dimer, and as such shows the
consequence of frustration relief for the DM interaction.

C. Intermediate regime: 0.06=D/J=<0.1

Our results for the local magnetic properties (Figs. 2 and
3) imply the presence of an intermediate regime, 0.06
=<D/J=0.1, which cannot be classed as being in either of
the above limits. Here the spins develop a peculiar magneti-
zation pattern around the impurity site, seemingly indicative
of spins with no effective interaction which only follow the
applied field. This is shown for the case D/J=0.1 in Fig.
2(c), but the analogous picture for D/J=0.07 is practically
indistinguishable. We have investigated this regime in con-
siderable detail as a function of D/J, of the applied field B/J,
and of the field angle 6, finding essentially perfect linear
response to the field down to the lowest energy scales. As we
will show in Sec. IV, the in-plane magnetic correlation data
show no evidence for long-ranged magnetic order in this
regime.

While we cannot exclude the possibility of some type of
exotic order in this regime, such as a chiral or a spin-nematic
phase, we are unable to find any evidence of a local order
parameter. Thus we feel that, pending further studies by
other approaches, the most likely explanation for the peculiar
magnetization patterns we observe lies in finite-size effects.
One of the reasons that these effects are strong here is the
fact that a uniform magnetic field is not the appropriate con-
jugate field for the three-sublattice ordered state, and thus
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competes with this type of order close to the critical point
where the size of the ordered moment is small.

IV. MAGNETIC CORRELATIONS

Although the analysis of the local magnetization data in
Sec. III reveals several major qualitative features of the
ground state of Eq. (1), a number of issues remain unre-
solved. One is whether there exists any type of magnetic
order in the window 0.06<D/J=0.1, and what is the actual
critical value of D/J where the 120° phase is established.
Another concerns the fact that the magnetization patterns
shown in Fig. 2 give few indications regarding the conse-
quences of finite-size effects in our calculations, which may
be quite different in different parameter regimes, and a
method is required by which to make this more systematic.
Further, the actual magnitudes of the moments in the ordered
phase cannot be inferred from the local magnetization data
because the latter do not represent the thermodynamic limit.
While we will obtain these moments, here we will not pursue
the observation, from our numerical data for the field depen-
dence of the magnetizations at large D (D/J= 1), that a very
large field (B/J~1) is required to establish their full
lengths.3¢

It is thus necessary to analyze the magnetic correlations in
the ground state |W) of Eq. (1) as a function of D/J. The
easy-plane character of the DM anisotropy allows us to focus
on in-plane correlations, but the breaking of translational in-
variance by the impurity makes it necessary to consider the
full set of these, which is contained in an N X N matrix with
entries

C;j=(¥ls; s]_|‘P> (4)

We remark here that an analysis based on the connected (or
cumulant) correlation matrix instead of on C [Eq. (4)] gives
the same results because for the fields considered in this
study, the local magnetic moments (s; ) are negligibly small
compared to the connected portion of the correlations, a re-
sult which is true for both small and large values of D/J. A
further consequence of this is that our low-field correlation
data (B=J/20 in the calculations to follow) are essentially
identical to the B=0 case.

For translationally invariant systems, the correlation ma-
trix can be partially or fully diagonalized by a simple Fourier
transformation. In the present case, where translational in-
variance is absent due to the nonmagnetic impurity, C must
be diagonalized numerically. The information contained in C
is very useful, especially if the ground state contains long-
ranged magnetic correlations in the xy plane. In this case, it
is known (Refs. 37 and 38 and Appendix B) that the maxi-
mum eigenvalue A,, of C is macroscopically large, i.e., \,,
o« N. The corresponding eigenvector, v,,, then describes the
magnetic mode of the system with the dominant fluctuations,
and thus is related directly to the spatial dependence of the
relevant order parameter. In the case at hand, the dominant
mode v,, is not simply a periodic modulation of the spins,
but will contain valuable information for the nontrivial mag-
netization profile around the impurity. In what follows we
exploit this information.
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FIG. 5. (Color online) Eigenvalues \; of the correlation matrix
(divided by N) as a function of D/J for N=14 (circles), 17 (down
triangles), 20 (squares), 23 (up triangles), and 26 (diamonds). Here
B=J/20 and #=30°, but the results for B=0 are identical.

Figure 5 shows the full eigenvalue spectrum of C for
clusters with N=14, 17, 20, 23, and 26. The results for B
=0 and B=J/20 are indistinguishable. An essential feature of
Fig. 5 is that, as D/J is increased in the region beyond 0.06,
the maximum eigenvalue on each of the clusters becomes
proportional to N, and thus very much larger than the re-
maining eigenvalues; we caution that the actual value of this
crossover cannot be inferred from the data of Fig. 5, where it
is evident that the curves are still some way from the ther-
modynamic limit, and address this point below. As described
in Appendix B, this means that the system has developed
long-ranged in-plane magnetic correlations in the regime of
large D/J. For small D/J, all the eigenvalues depend only
weakly on D/J and are closely spaced in magnitude, which
is a sign of short-range correlations dictated not by D but by
J.

The finite-size scaling of the dominant eigenvalue \,,,
normalized by N, is given in Fig. 6. The extrapolated values
of this quantity represent the square of the average magnetic

s b b b Lo b by

0.05[

GO 0.05 0.1 0.15 0.2 0.25 0.3
N-

FIG. 6. (Color online) Scaling with system size of the largest
eigenvalue N, (divided by N) of the correlation matrix. The solid
lines correspond to the expected 1/N scaling of the leading cor-
rections to the thermodynamic limit in the 120° ordered phase.
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FIG. 7. (Color online) Magnetization profile for the 26-site
kagome cluster in zero field, corresponding to the eigenvector v,, of
C with the largest eigenvalue \,,. The in-plane moments are given
by the real and imaginary parts of v,,. Note that this mode is unique
up to a global U(1) rotation which is related to the arbitrary phase
of v,,.

moment in the thermodynamic limit, where the spins reach
approximately 80% of their full moment as D/J— %.3° For
all values D/J>0.1, it is clear that the finite-size corrections
scale as 1/\W, as expected for a state of broken U(1)
symmetry.*? This scaling procedure represents the appropri-
ate means of deducing the existence of long-ranged magnetic
order, by continuing the curves of Fig. 5 to the infinite-
system limit. However, this powerful method shows no indi-
cation of such order in the regime 0.06<D/J=<0.1, specify-
ing that the transition to the semiclassical state should be
taken as D/J=0.1.

The magnetization profile corresponding to the dominant
eigenmode v,, also contains important information, which is
shown in Fig. 7 for the four representative values of D/J and
represented by two-dimensional arrows whose components
are the real and imaginary parts of v,,. At D/J=0.06, there
is no dominant mode as is the case at large D, but the stron-
gest mode shown in Fig. 7(a) corresponds nevertheless to the
pattern of strong spin correlations around the impurity [Fig.
2(a)]: the correlations in this mode are confined to the strong
bonds next to the impurity, where the spins are almost anti-
parallel. The strength of these local correlations is governed
by J, which is the reason why \,, remains essentially D in-
dependent, for D/J=0.06 in Fig. 5. We emphasize again that
the profile shown in Fig. 7(a) does not represent the actual
magnetization response—this is shown in Fig. 2(a)—but
rather the dominant fluctuation mode.

The situation changes dramatically at D/J=0.1 [Figs.
7(c) and 7(d)], where the system develops long-ranged order
with the majority of spins participating in the Q=0 semiclas-
sical 120° state. The data show clearly that the crossover
from the dimerlike regime at small D/J to the ordered phase

214415-6



DZYALOSHINSKII-MORIYA ANISOTROPY AND...

at high D/J is smooth, and there are no indications for any
other type of magnetic order in the intermediate regime
0.06=D/J=0.1. This suggests once again that the peculiar
magnetization pattern found in Fig. 2(b) is most likely to be
a fluctuation effect which is emphasized close to the critical
point.

Indeed, our analysis of the magnetic correlations allows
us to develop a qualitative understanding of the situation in
this regime. The kagome AFM is characterized by a very
high density of nearly degenerate states in the ground mani-
fold. The effect of a DM interaction term D is to favor cer-
tain states and penalize others, but this process is extremely
sensitive to the shape and size of the cluster used in the
calculations. Some of our results, such as the discrepancy
between Figs. 2(c) and 7(c), are evidence of significant
finite-size effects. These effects are expected to, and indeed
in Figs. 5 and 6 observed to, increase on approaching the
critical regime around D/J~0.1. With such small separa-
tions between sets of energy levels, the effect of a magnetic
field applied in this regime can be dramatic: certainly some
of the differences between Figs. 2 and 7 may be ascribed to
the finite field in the former. While it remains impossible to
exclude more exotic types of order for 0.06=D/J=0.1,
whose fingerprints might be difficult or even impossible to
discern in data obtained from the cluster sizes accessible by
exact diagonalization, these considerations make systematic
our statement that the most probable explanation for the ten-
dency of the small-D/J and large-D/J data to suggest the
presence of an intermediate regime remains in the realm of
finite-size effects.

The magnetic correlation data also quantify the extent to
which the four sites closest to the impurity continue to resist
the effect of D (Fig. 7). As already inferred from the behav-
ior of the correlation amplitudes (Fig. 2), these spins do not
adopt a relative 120° orientation, but remain almost antipar-
allel to each other up to DM interactions D ~J. This direct
consequence of frustration relief in the two doped triangles
also suggests that the actual orientation of the ordered com-
ponent of these spins will continue to reflect the behavior of
a dimer, and thus will be dictated by D and B as well as by
the coupling to the other spins. Only at surprisingly high
values of D/J does a crossover occur to predominant corre-
lation with the other spins of the system, and hence to par-
ticipation in the 120° ordered state.

This special response of the four sites closest to the im-
purity is demonstrated once again in Fig. 8, which shows the
orientation and magnitude of the spin components obtained
from the dominant eigenmode v,,. Here the spin magnitude
at site i is represented by V\,,|v,,(/)|, while the corresponding
angle is determined from the phase representation of the real
and imaginary parts of v,,(7). The primary feature of Fig. 8 is
that, while both the magnitude and the orientation for the
majority of sites (open symbols) largely merge together at
D/J=0.06, the same quantities for the four sites closest to
the impurity (filled symbols) remain different up to D~J.
This feature, present in all three clusters, reinforces the pic-
ture of the special behavior of the frustration-relieved spins.

V. SUMMARY AND DISCUSSION

We have presented an extensive exact-diagonalization
study of the combined effects of nonmagnetic impurities and
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FIG. 8. (Color online) In-plane spin magnitudes and orientations
[represented respectively by y\,|v,,(i)| and by the phase 6; of
v,,(i)] as a function of D/J, for clusters with N=14 (circles), 20
(squares), and 26 (triangles). The data corresponding to the four
sites closest to the impurity are highlighted by filled symbols.

Dzyaloshinskii-Moriya (DM) interactions in the s=1/2
kagome antiferromagnet (AFM). Although the clean and
purely Heisenberg kagome AFM remains an enigma, being
apparently nonmagnetic and possibly dimer based, we have
shown how DM interactions immediately induce a magnetic
response, and impurities immediately nucleate very strong
and somewhat extended patterns of dimerization. We have
found that the system undergoes a phase transition from this
magnetically disordered state to the Q=0 three-sublattice
(120°) ordered state when the interaction ratio between the
DM and AFM terms is D/J~0.1. This conclusion is in
agreement with the results obtained by Cépas et al. for the
clean kagome lattice.?”

For D/J=0.06, there is strong dimerization of the spins
next to each impurity site as a consequence of frustration
relief in these two triangles, as shown by Dommange et al.!!
for the D=0 case. An oscillating pattern of weakly and
strongly dimerized bonds then extends some distance from
the impurity site. In the presence of DM interactions, the
applied field induces a magnetic response on top of this
dimerization pattern, which on the strongly dimerized bonds
shows the same qualitative behavior as an isolated dimer,
namely, a dominant staggered component directed along D
X B. The induced magnetic moments on the sites closest to
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the vacancy are small as a result of their strong dimerization,
and we have shown why the magnetization on the next-
nearest strong bonds is approximately four times larger than
this. The maximum induced magnetization is thought to oc-
cur on these sites or on the next (i.e., next-next-nearest)
“ring” of more strongly dimerized bonds beyond them.'" Still
further from the impurity, the local moment decreases again,
toward the weak and uniform response (by which is meant
no staggered component) of the clean kagome system with
DM interactions. Because this is proportional to D X (D
X B), it is much smaller than the staggered response around
the impurity sites.

The ordered phase established at D/J=0.1 shows all the
hallmarks expected for semiclassical magnetic order. How-
ever, we found that the spins closest to the impurity remain
strongly correlated with each other up to surprisingly large
values, D~ J, before they begin to participate fully in the
ordered state. Thus a substantial portion of the actual mag-
netization of these spins remains similar to that of a dimer,
and is set by D and B. Despite the fact that the obvious
features of these two phases end at separate values of D/J
which leave open the possibility of an intermediate phase,
between these limits we have been unable to find any definite
evidence for another type of physical behavior. Thus we are
forced to the tentative conclusion that there is only one true
phase transition in the system, and the features we have ob-
served for 0.06<D/J<0.1 are most likely to be artifacts
resulting from the low effective energy scales in this regime
and from the small system sizes to which our calculations are
constrained.

We conclude by discussing the implications of our results
for the interpretation of experiments performed on
ZnCu;(OH)¢Cl,. The most accurate probe of the local mag-
netic response around doped impurities is NMR, and so we
focus on the 7O NMR measurements of Olariu ez al.'® Be-
fore comparing the experimental results to our calculations,
which were performed for a single vacancy in small kagome
clusters, it is necessary to consider the impurity concentra-
tions in the experimental samples. Because these are on the
order of 5% for the cleaner samples used in the measure-
ments made to date,'® the average linear spacing between
impurities is then 4-5 Cu-Cu bond spacings: in fact this is
rather similar to the length scales probed in our N=20 and 26
clusters. From our results, it is safe to say that there are no
Cu spins in the real material which can be considered as
being far from any impurity sites.

Our conclusions show that the situation D/J>0.1 may be
safely excluded for herbertsmithite because a magnetically
ordered phase of any type is inconsistent not only with the
NMR experiments but also with muon spectroscopy and in-
elastic neutron-scattering experiments,'®!7 where no such or-
der has been found for any temperatures down to 50 mK. By
contrast, for DM interactions D/J<0.1, one would expect to
observe a broad NMR signal as a consequence of the con-
siderable number of inequivalent Cu sites produced by the
partially frozen patterns of dimerization and induced local
moments around the randomly distributed impurities. This is
compatible with the shape of the M line measured in Ref. 18,
while the D line, which probes only one type of Cu site,
would indeed be expected to be sharp. Further, our calcula-

PHYSICAL REVIEW B 79, 214415 (2009)

tions quantify the way in which the DM interaction removes
the apparent singlet nature of the D=0 ground state, leading
to the finite line shift observed in experiment in the limit
T—0.

To be more specific about the actual strength of D/J in
herbertsmithite within the disordered regime, we appeal to
our results (Sec. III) for the relative local moments on the
sites around an impurity. On the qualitative assumption that
the '’O line shift should scale with the sum of the moments
on the two neighboring Cu sites, the 1:4 moment ratio found
for the nearest two Cu sites in the low-D regime (D/J
=<0.06) would be expected to result in a 1:5 ratio of the
corresponding line shifts. Thus the observed 1:2 ratio!® sug-
gests quite strongly that herbertsmithite falls in the regime
0.06=D/J=0.1. While the exact nature of the ground state
in this region remains to be confirmed, it is clear that it is
nonmagnetic, and that the moment ratio between the two
types of Cu sites closest to an impurity is significantly
smaller than at low D/J [Fig. 8(b)]. Such a value for D/J is
fully consistent with the result D=0.08J obtained by
electron-spin resonance in Ref. 24.

Finally, we have shown in the disordered regime (D/J
=<0.1) that sites close to the impurities exhibit strong fea-
tures characteristic of the response of isolated dimers, with
those right next to an impurity (the D line) reflecting a very
weak induced magnetization. This behavior could explain the
suppressed local susceptibility at 7—0 and the enhanced
nuclear spin-lattice relaxation times 7, found!® for these
sites. However, to go beyond this qualitative level of agree-
ment, it seems necessary to have access to single-crystal
data, which would provide a detailed understanding of the
hyperfine interactions in ZnCu;(OH)4Cl,. These are required
to investigate the dependence of the magnetic response on
the field orientation and the line-shift contributions from
each Cu site as a function of its induced magnetization, in-
formation which could be interpreted directly within our cal-
culational approach.
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APPENDIX A: LINEAR RESPONSE OF THE FOUR-SITE
CLUSTER

Here we present the details of the magnetic response of
the four-site cluster shown in Fig. 9, and demonstrate why
this can be considered as the minimal cluster illustrating the
physics of the low-D regime. The Hamiltonian is

H=H1+H2+VEH0+V, (Al)

in which
H1=J(SI‘SZ+S3‘S4)—B‘S, (AZ)
H2=J(52 *S3+ 8, S4)9 (A3)

214415-8



DZYALOSHINSKII-MORIYA ANISOTROPY AND...

\
Y 2

FIG. 9. (Color online) Typical in-plane magnetization pattern
(red arrows) and spin correlation functions (represented in blue by
the bond thickness) for the minimal four-site cluster in the small-D
regime. Here D=B=J/20, 6=30°, and the orientations of the DM
interactions are the same as for sites 1-4 in Fig. 1.

V=D-(5; X8 +8, XS3+83 X 8,+8, X5,), (A4)
S=ZXs, is the total spin, D=De_, and B lies in the xz plane, as
shown in Fig. 1. Our purpose is to examine the magnetiza-
tion response of this cluster for small fields and to explain
why this captures the generic response of the corresponding
sites around the impurity in Fig. 2. We find numerically that
to leading order in D/J there is a staggered response along
the y axis given by

(s)=~(s)=3D X B, (AS)

(s)=-(s)= 2D B, (A6)

i.e., the magnetization response at bond (1,2) is precisely that
expected for an isolated dimer while, surprisingly, the re-
sponse at the bond (3,4) is approximately five times greater.
We provide a qualitative interpretation of this result based on
the character of the excitations of H,,.

Using V as a perturbation, the ground state is given to
leading order by |#)=(1+RV)|¢), where |¢) is the ground
state of Hy, R= Ef_% is the corresponding resolvent operator
with Q=1-|){(1|, and Ey=-3J/2. The mean value of any
operator A is then given by

(A) = (h|ARV|gh) + Hoc., (A7)
where we have assumed that {i|A|¢)=0. Because this re-
lation gives the linear response, it may be used to obtain the
individual contribution of any of the DM terms contained in
V to the magnetization of any spin site.

For each of the bonds (1,2) and (3,4), it is convenient to
use the singlet and triplet basis states |s)=(|T1)—[/1))/V2,
ey =[11). ltoy=(T1)+[11)/\2, and |r_;)=||]). For B<J/2,
the ground state |¢) of H, is the product state of the two
singlets,

|4ho) = [$)12 @ [s)4- (A8)
Also applicable are the relations*!
Hols) 1, ® [s)34=0, (A9)

PHYSICAL REVIEW B 79, 214415 (2009)

H2|tm>12® |S>34=0, Vm=0, + 1, (AIO)
which specify that the state |t,,),, ® |s)34 is also an eigenstate
of H,. Thus the local excitation of a triplet on bond (1,2), for
example by acting with the term D-s, X's; (or the operators

A=sY,) on |yp), gives

1
Rlty)1n @ |s)34 = m|tm>12 ® [$)34

. (A11)

and the triplet remains localized.

By contrast, a triplet on bond (3,4) will not remain local-
ized because |s);,® [t,,)34 is not an eigenstate of H,. With
these considerations and by using Eq. (A7), it is easy to show
that of all the DM terms contained in V, only D-s, X's; con-
tributes to (s, »), and this explains in turn why the response at
bond (1,2) is that of an isolated dimer. The staggered mag-
netization at bond (3,4), on the other hand, is driven by all
the terms of V except D-s, X's|, which explains why this is
different from the response of bond (1,2). More generally, we
see that although the ground state of H,, is a product of two
dimers, the different character of the local excitations leads
to quantitatively very different responses. This completes the
qualitative interpretation, summarized in Sec. III, for the dif-
ferent magnetization responses of the sites around the impu-
rity in Fig. 2.

APPENDIX B: INTERPRETATION OF MAGNETIC
CORRELATIONS

Here we provide a more detailed presentation of the natu-
ral orbital method used in Sec. IV for the study of in-plane
magnetic correlations. We consider the ground state |¥) of
the Hamiltonian given in Eq. (1) and express the in-plane
magnetic correlations by the matrix C of Eq. (4). Let us
denote by {\,,v,} the set of eigenvalues and normalized
eigenvectors of C, i.e., C-v,=\,v,. In addition to being Her-
mitian, the correlation matrix C is also positive semidefinite
because for any normalized vector v one has v'-C-v
=||M,|P)|[>=0, where

My= 2 v(i)s; (B1)

defines a macroscopic magnetic mode. Thus A, =0 for all a.
Further, because s*s™=1/2+s° for s=1/2, Tr C=Z\,
=N/2+(S%). We note also that the eigenvalues A, give the
fluctuations of the matrix M, [specified by Eq. (B1) with
v=v,] because

(WIMEMGWY =N, 8. (B2)
In order to discuss magnetic order, we consider the thermo-
dynamic limit and address the question of what is required to
ensure long-ranged in-plane magnetic correlations, i.e.,

[

(B3)

To this end, it is convenient to express C in terms of its
spectral decomposition,
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Cij= 2 N0 (). (B4)
a

Equations (B3) and (B4) mean that there should exist at least
one eigenstate v,, with a nonzero amplitude v,,(i) for all i.
However, v 1£ a quantity normalized to one by an overall
factor of 1/vN, which from Eq. (B3) means that the corre-
sponding eigenvalue is macroscopically large, N, N. If only
one (the maximum) eigenvalue has this property, it is safe to
replace Eq. (B4) with

Cij = )\mvm(l)vfn(])

because the neglected terms are negligibly small for N — oo,
This special separable form of the correlation matrix in an
ordered state allows one to identify the relevant local order
parameter. Indeed, in an explicitly symmetry-broken (coher-
ent) state we may replace (s7s;) by (s;)(s}), and hence make
the identification

(sTy =57y +i(s)) = VA (i)

We remark here that these in-plane spin components are
fixed only up to a global U(1) rotation due to the fact that the

(B5)

(B6)
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eigenstate v,, is only specified up to a global phase. The
corresponding macroscopic order parameter is given by M,
because [using Eq. (B2)]

(UMM, [ ¥y =N, = N, (B7)

m

and thus the response to a conjugate field that couples di-
rectly to M, diverges in the thermodynamic limit.

Finally we should mention the analogy of the discussion
presented in this appendix to Bose-Einstein condensation,
and in particular to the case of cold-atom systems confined in
a harmonic trap (see for example Ref. 42). The correlation
matrix in such a system is the one-body density matrix,
p1(x,x"), which measures the coherence between different
parts of the system. The eigenstates of p; are termed “the
natural orbitals”, and the eigenvalues give the relative occu-
pation probability of these orbitals. As in our situation, off-
diagonal long-range order is signaled by the fact that one of
the eigenvalues of p; becomes macroscopically large.?”-3
The dominant eigenstate v,, of a magnetic system is thus
analogous to the condensate wave function in a superfluid.
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